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Abstract. The application of the maximum entropy method (MEM) to the reconstruction of the
three-dimensional electron momentum density for electrons with uncompensated spins is described.
The case of iron, for which the largest collection of experimental data is available, is presented
in detail. The analysis of the distributions in Fe3Si and Cu2MnAl alloys is carried out based on
measurements of the magnetic Compton profiles along only three high-symmetry crystallographic
directions. It is shown that the general density distributions in Fe and Fe3Si are very much alike,
while the data for Cu2MnAl can be interpreted with a single strictly positive distribution. It is
postulated that the crater-like structure of the magnetic Compton profiles may be due to both
conduction and d-band polarizations. In such a case one could reconcile the results of the neutron
and Compton experiments.

1. Elements of the maximum entropy method

In accordance with the well known approach (Jaynes 1983), the information entropy of the
distributionf (x) which fulfils the requirements of positivity and additivity is given by

S = −
∑

f (x) ln[f (x)] (1)

where the summation runs over all values ofx. If the space ofx is divided intoN pixels
numerated by an indexi, equation (1) can be rewritten as

S = −
∑

fi ln(fi) (2)

wherefi denotes the value off (x) in theith pixel.
Let us now assume that one is havingM measurements which are expected to be described

by a functionG{j ; f (x)}, i.e. every data pointdj (j = 1, . . . ,M) should be described as

dj = G{j ; f (x)} + ej = Gj + ej (3)

whereej denotes a noise, usually assumed to be Gaussian. Then the goodness of our choice
of G-function is quantified through the likelihood function

PL = A exp(−χ2/2) (4)

whereA denotes a normalization constant and

χ2 =
∑(

dj −Gj

ej

)2

(5)
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is the usual misfit function to be minimized in order to obtain the maximum value of the
likelihood function. Obviously,Gj in equations (3) and (5) is the shortened abbreviation of
the functionG{j ; f (x)}.

Actually, maximization of the likelihood function may not be the only goal of the
experimentalists who want to search for the best functionf (x), which describes the data.
In accordance with the idea of the maximum entropy method (MEM), the functionf (x)which
is compatible with the experimental data and is making least use of the unavailable information
is the one which maximizes information entropy

S = −
∑
{fj ln(fj/mj )− [fj −mj ]} (6)

wheremj = m(xj ) is the default function or the distribution known prior to carrying out the
experiment, or any modelled distribution which may be expected on some physical grounds. If
nothing is known about the searched for distributionf (x), a uniform distributionm(x) = const
is used as the prior. Using the undetermined Lagrange multipliers method one is maximizing
finally the following Lagrangian:

L = S − λ[(χ2 − χ2
aim)/2] (7)

whereλ is a positive Lagrange multiplier, which should be chosen in such a way that the
maximization of the Lagrangian (7) would result inχ2 = χ2

aim. It is customary to set the latter
to the numberM of the measured points.

Illustrating examples of the use of the maximum entropy method can be found in various
conference proceedings (edited by Smith and Grandy (1985), Skilling (1988, 1989), Erickson
and Smith (1988) and Mohammad-Djafari and Demoments (1993)). The basic routines are
also commercially available (Gull and Skilling 1989). In the case of reconstruction of the
charge density distribution one can use the program package MEED (Sakata and Sato 1990,
Sakataet al1993) distributed free of charge. After a small modification this same package can
be used for internal magnetization distribution (see e.g. Dobrzynskiet al1996). In both cases,
however, one should be careful with conclusions because the MEM can occasionally produce
spurious details in the searched for distributions (see e.g. the critique by Jauch (1994)).

We shall focus our attention on the application of the maximum entropy method to the
reconstruction of the momentum density for electrons with uncompensated spins from the set
of experimentally measured so-called magnetic Compton profiles. The essential MEM ideas
are the same as used in Dobrzynskiet al (1996). Because the searched for distribution can be
negative, one is composing it from two strictly positive distributionsf+(x)andf−(x), following
e.g. Papoular and Gillon (1990). These distributions, however, should not be interpreted as
describing the ‘up’ and ‘down’ spin electrons. The total entropy is nowS = S+ + S−, where

Sσ = −
∑

pσ ln(pσ /mσ ) (8)

with σ = +,− (summation runs over all pixels or rather voxels) and

pσ = fσ
(∑

(f+ + f−)
)−1

. (9)

The maximization of the Lagrangian is carried out with respect to bothp+ andp− functions.
As a result one obtains 2Npix strongly nonlinear equations, whereNpix denotes the number
of voxels in which the densities are to be determined.

In order to normalizefσ functions, a parameterα defined as follows will be used:

µ+ = (1 +α)µspin,tot =
∑

f+ (10)

and

µ− = −αµspin,tot = −
∑

f− (11)
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whereµspin,tot denotes the total spin magnetic moment that must be preserved throughout the
calculations (see section 4). Let us note that the search of a strictly positive distribution means
settingα at zero and using only one of the two components of the sums in equations (8) and (9).

2. Electron momentum distributions

Electron momentum density distributions are measured in the x- orγ -ray scattering
experiments. The shape of the Compton line, the so-called Compton profile, is

J (pz) =
∫
n(px, py, pz) dpx dpy (12)

wheren(p) is the three-dimensional electron momentum density distribution and thez-axis
is determined by the geometry of the experiment. The problems encountered in the
reconstructions of then(p) from the sets ofJ (pz) measured along various directions were
described by Dobrzynski and Holas (1996).

In the so-called magnetic Compton scattering one measures the difference between the
‘up’ and ‘down’ Compton profiles, i.e.

Jmag(pz) =
∫

[n+(p)− n−(p)] dpxdpy. (13)

The integral ofJmag(pz) overpz must be equal toµspin,tot . The difference of the ‘up’ and
‘down’ densities may be positive and negative, so the reconstruction of this difference function
requires calculations similar to the ones carried out in order to reconstruct a magnetization
distribution (see e.g. Papoular and Gillon 1990, Dobrzynski 1995). Maximization of the
entropies with respect to both ‘up’ and ‘down’, densities (such a procedure is also called two-
channel MEM) requires prior knowledge of the parameterα or some features of the function
to be reconstructed. For example, one can seek solutions that are strictly positive at large
momenta and decay to almost zero at a certain momentum value. One can also be guided by
the anisotropy of the distribution or the momentum value below which negative solutions are
expected. As can be seen, if one is completely ignorant regarding the searched for distribution,
the results obtained can be physical only when a sufficient number of high-quality experimental
data is accumulated.

3. Technical details of the reconstructions of the electron momentum densities

The problem that arises immediately when we start to work with the MEM algorithm is the
fitness of the grid that should be used for the reconstruction. A typical range of electron
momenta contributing to the Compton profiles is from about−12 au to +12 au (where 1
atomic unit, 1 au= 1.99× 10−24 kg m s−1; this value follows from the adopted convention in
which h̄ = m = e = 1, c = 137), so the space to be covered by the grid is very large. Typical
measurements are carried out with the momentum step of 0.1 au, which means that in order
to reconstruct the density with similar resolution one needs to use a grid of 2413 = 1.4× 107

voxels! Required symmetry of the distribution will reduce this number by 48 in the case of
cubic symmetry. However, even having to calculate the densities in these 3×105 voxels which
are left signifies that one has a difficult computational problem.

Let us now consider a relationship between the densityni in theith voxel and the available
experimental information. Let the Compton profiles be measured atNmax points for every
directionj = 1, . . . , Ndir . In other words, the experiment delivers the valuesJj (pi), where
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i = 1, . . . , Nmax . The surface integrals (13) can be represented as sums, so one expects that

Jj (pi) =
Ndir∑
j=1

Nmax∑
i=1

Npix∑
k=1

a(j, i, k)nk + eji (14)

where the subscriptmagwas omitted for simplicity. The coefficientsa(j, i, k) are not trivial,
so they should be calculated only once at the beginning of the reconstruction. This saves
computing time but costs computer memory because the matrixa(j, i, k) easily occupies
hundreds of megabytes of memory. A computer program written by us is capable to calculate
the coefficientsa(j, i, k) for cubic, hexagonal and tetragonal structures. The integrations can
be carried out over respective polygons or over a sphere. It was shown that the latter leads as
a rule to lower accuracy of the results and therefore is not practical. The general calculation
scheme in solving MEM equations is the same as used in the MEED package.

4. Reconstruction of the three-dimensional momentum density for the uncompensated
spins in iron

There are no simple methods which permit us to carry out a reliable reconstruction without
previous knowledge or expectations of some important details in the density distribution that
one is going to retrieve from the experimental data. Normally the total magnetic moment is
known. However, because the Compton scattering at high energies senses the spin moment
only, even this information may sometimes be insufficient. Happily, in the case of iron,
the orbital moment is known fairly well, so at least the value of the magnetic moment that
contributes to the magnetic Compton profile is known. In the following, the results obtained
for iron by Tanakaet al (1993) will be analysed. As mentioned previously, the reconstruction
of interest involves positive and negative densities. Normalization of their difference is known
only, so the multitude of resultant distributions can be obtained (Dobrzynski and Holas 1995).

First the reconstruction within a cube of side 10 au, and voxel size (0.1 au)× (0.1 au)×
(0.1 au) was carried out. The cube contained positive momenta (including zero) only. Using
the cubic symmetry constraints the number of independent voxels in which the densities were
calculated was 176 851. The number of maximum entropy equations that one has to solve was
thus 353 702. The experimental results within the range of up to 10 au for the high-symmetry
directions〈100〉, 〈110〉, 〈111〉 and〈112〉 were used at the beginning. A series of calculations
have been carried out for a variety of values of the parameterα. In every case, the program
converged and was delivering reconstruction which described the experiment sufficiently well
in the sense of theχ2-test. We show two such reconstructions in figures 1 and 2, the former
carried out forα = 1.0, the latter forα = 0.5. In contrast to the procedure used by Dobrzynski
and Holas (1995), a nonuniform prior was used. It follows from the paper by Tanakaet al
(1993) that the prior should be predominantly negative in the momentum region of up to 1.4 au,
and predominantly positive above this value. The prior momentum densities in both parts of
the space were kept uniform. Three results should be mentioned:

• while the positive part of the reconstructed distribution does not seem to be too sensitive
to the initial assumptions, the value ofα is quite essential for seeing the details in the
negative part of the density distribution,
• if one integrates separately the positive and negative parts of the resultant density,n+−n−,

the sum of which gives the spin magnetic moment, one clearly sees that the negative
moment corresponds to a much lower value ofα than initially assumed. While such
a decrease can be expected on general grounds, the scale of this effect turns out to be,
however, unexpectedly large. For the two cases presented in figures 1 and 2, the values
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Figure 1. Reconstruction of the momentum density distribution for uncompensated spins in iron
along three high-symmetry directions. The case ofα = 1.0 in the nonuniform prior. Four high-
symmetry directions used in the reconstruction.

0 2 4 6 8 10
Electron momentum [a.u.]

-0.002

-0.001

0.000

0.001

0.002

M
o

m
en

tu
m

 d
en

si
ty

along <100>
along <110>
along <111>

Fe
α= 0.5

Figure 2. Same as figure 1 but forα = 0.5.

of positive and negative moments (in arbitrary but the same units following from the
normalization of the experimental Compton profile and the voxel size; in order to obtain
the moments in Bohr magnetons one has to multiply the quoted values by about 10) are
0.210 and−0.016 forα = 1 and 0.207 and−0.011 forα = 0.5. These values correspond
to α values equal roughly to 0.08 and 0.06, respectively. It is clear that neither the shape
of the negative part nor the absolute value of the negative moment can be well determined
unless further assumptions are made,
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Figure 3. Results of the reconstruction based on all 14 directions measured; see text for details.

• for largerα values, quite a substantial part of the negative density appears at high momenta
which is not physical. Therefore one obtains at least an indication that the reconstruction
carried out, say, forα = 0.5 is more likely than the other one. In fact, starting from a
completely uniform prior within a cube of size 10 au, even for this latter value ofα one
obtains the negative net density at larger momenta. One can obtain some improvement
(more negative density at low momenta) if the uniform prior is limited to a smaller volume;
nevertheless the negative densities at larger momenta are preferred. These observations
indicate that the information content in the results of the magnetic Compton profiles for the
four aforementioned crystallographic directions is insufficient for reliable reconstruction
of the negative part of the density unless one adds an extra information. For example, if one
knows that the negative density cannot appear above momentum of, say, 1.4 au, the imme-
diate result is that one should use a non-uniform prior andα less than approximately 0.5.

In the next step the experimental results for five off-symmetry directions,〈013〉, 〈023〉,
〈012〉, 〈133〉 and 〈223〉, were also included. This resulted immediately in the cancellation
of negative densities at high momenta. The positive part was, as expected, not seriously
altered. This time, however, the negative densities at low momenta appeared to have very
inhomogeneous, almost conical distribution. It is apparent that one should use all experimental
information available, results for all 14 directions measured. In order to reduce increased
computational effort, each side (of the 10 au length) was divided this time into 50 pixels only,
and every second experimental point only (distant from each other by 0.2 au) from the range up
to 7.1 au was taken into account. The reconstructed density, which is shown in figure 3, leads
to magnetic Compton profiles which fit excellently to the experimental data. One notes that the
total negative moment obtained is apparently larger than previously obtained and the negative
valley is deeper. One could of course now study the influence of the initial value ofα on the
depth and shape of this valley. What we, however, found more important was to see whether
one cannot obtain a more uniform distribution of the density within the valley. With this idea in
mind we have chosen a prior in which the positive part was as in the result just described, while
a cylindrical well was used as a prior in the negative part. Of course, the negative densities
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Figure 4. Positive, negative and resultant densities as directly obtained in the course of calculations
for the〈100〉 direction (the resultant density is the same as in figure 3).
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Figure 5. The comparison of measured and reconstructed magnetic Compton profiles for the〈223〉
direction, for which the reconstruction was the worst one.

were integrating out to the appropriate value of the magnetic moment. The final result was not
fundamentally different from the one shown in figure 3. It is worth noticing that although in all
priors non-analytical distributions were introduced, the reconstructed densities are behaving
properly, and so both positive and negative partial densities are as well, see figure 4. How well
the reconstructed density fits the experiment may be illustrated by making a comparison of
the measured and reconstructed magnetic Compton profiles. Such a comparison for the〈223〉
direction for which agreement is the worst,χ2 on the level of 1.6, is displayed in figure 5.
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For most of the directions theχ2 parameter is less than 1.0, which means that the reconstructed
points are hardly distinguishable from the measured ones.

In conclusion, we can say that the measured 14 directions for iron may be sufficient
for a reliable three-dimensional reconstruction providing extra information is included in the
calculations. This information may be, for example, the value of the total negative moment,
which should appear at low momenta. If this moment was uniquely due to conduction
electrons then, based on the neutron results of Shull and Yamada (1962), one could expect
the value of−0.16µB /atom, while the recent theoretical estimate (Erikssonet al 1992) gives
−0.07µB /atom. Within the normalization of the magnetic Compton profiles used here these
values are:−0.018 and−0.007, correspondingly. Personally, we believe more in the latter
value (see Dobrzynski 1974, van Laaret al 1980, Dobrzynskiet al 1996).

Leaving the value of negative moment aside, one can raise an important question on what
such an integrated negative moment really represents. We note that the depth of the valley
seen e.g. in figure 4 agrees quite well with the theoretically obtained one, which was shown in
the paper by Tanakaet al (1993). If the integrated negative density were ascribed solely to the
diffuse part of the magnetic moment, this would imply that the d-type magnetic density would
be practically zero at low momenta. On the other hand, if the d-part of the density continued
to grow below, say, 1.5 au, a relatively large negative moment would be needed in order to
compensate for such growth of the positive moment. Therefore we believe that the d-part
itself of the momentum density for spin-uncompensated electrons must have some crater-like
structure around zero momentum. This in fact may be quite natural in light of the exchange
polarization among d electrons, which leads to the dependence of the wavefunction on the spin
of the electron. This effect, which is generally responsible for the appearance of hyperfine
fields on nuclei, leads to the relative contraction of the d wavefunction of the electron with
spin up with respect to the wavefunction for the spin-down electron. At large distances from
the atomic centres and, correspondingly, at low momenta, one can thus expect even negative
3d-type densities. It is also possible that the hybridization of d and (s, p) electrons in the low
momentum range does not permit us to make any sensible distinction between these electrons.

It may be interesting to note that the 3d-part of the momentum density shows clearly eg-
type symmetry, known already from the neutron measurements but seen here with sensitivity
enhanced with respect to the neutron case.

5. Reconstruction of the three-dimensional momentum density for the uncompensated
spins in Fe3Si

The magnetization distribution in Fe3Si was analysed by Dobrzynski (1995) who showed that
any homogenous negative magnetic moment is hardly visible in this alloy. Very recent magnetic
Compton scattering data (Zukowskiet al2000) brought, however, magnetic Compton profiles
strikingly similar to the ones for iron. Indeed, the reconstruction based on the only available
data for three high-symmetry directions shows a characteristic negative valley as in the case of
iron. Again, clear eg-type symmetry of the magnetic moment is seen. However, because in this
case the measurements have been carried out along three high-symmetry directions only, one
should be particularly careful with choosing the appropriate prior. The distributions along〈100〉
directions obtained for various values of the parameterα are shown in figure 6. Because of the
neutron result, initially a strictly positive distribution was assumed. The obtained distribution
showed very strong peak at about 2.2 au along〈100〉 direction. Similar peaks along〈110〉 and
〈111〉 directions did not exceed 20% of the〈100〉 peak height. The peak along (and in the
vicinity of) the 〈100〉 direction also showed some splitting. All of these features did not seem
to be physical and the conclusion was that one has to use a two-channel MEM. Forα = 0.1 or
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Figure 6. Fe3Si: the distributions of the momentum density of the electrons with uncompensated
spins along the〈100〉 direction for different choices of the parameterα.
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Figure 7. The distributions obtained for high-symmetry directions in Fe3Si whenα = 1.

0.2 one obtains apparent negative density at high momenta. Moreover, the asphericity of the
positive part still seems very exaggerated, see figure 7. With increasingα the asphericity is
diminishing and the negative density at large momenta is gradually disappearing. In contrast,
atα = 5 one obtains relatively high values of the positive densities at high momenta. Therefore
based on common sense we would expect that the results obtained forα between 0.5 and 1.0
are the closest to reality. There are apparent differences in the positive momentum densities
as compared to the case of iron (see figure 4). These densities integrate to 5.71µB , while the
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Figure 8. The momentum densities in Cu2MnAl for the strictly positive case.

negative densities integrate to−0.75µB . The corresponding values obtained forα = 0.5 are
about 5.46 and−0.50µB , so we see that the negative moment turns out to be quite substantial
anyway, of the order of−(0.12–0.18)µB /atom, i.e. in fact, stronger than in iron.

It is hard to say why the apparent negative moment observed in the Compton scattering
does not show up in the neutron case. It seems that it would be worthwhile to repeat the neutron
measurements for a different sample than the one used in the original experiment by Moss and
Brown (1972). A substantial correction for the extinction, which had to be used in the cited
experiment, could result in such an accidental lowering of the form-factor values at the most
intense reflections that the negative magnetization densities did not appear in the analysis of
the neutron data.

6. Momentum density distribution for electrons with uncompensated spins in Cu2MnAl

The magnetic Compton scattering on Heusler alloy, Cu2MnAl, was studied recently by
Zukowskiet al(1997). The main objective of these studies was to check whether the conduction
band is positively polarized, as could follow from the neutron diffraction experiment. As was
shown, the magnetic Compton profiles exhibited typical crater-like structure, which could be
interpreted as showing the negative polarization of the conduction band. The first feature which
appeared was that the density obtained in the low momentum region was always very small.
In fact, one could easily reconstruct the searched for density without invoking any negative
part. Such a strictly positive reconstruction is presented in figure 8. The distribution is almost
spherically symmetric, which is expected based on both neutron and Compton scattering results
while the density at zero is positive. Of course, this indicates that the conduction electron
polarization may indeed be positive. If one believes that the main reason to have a crater
aroundp = 0 au is the presence of the negative polarization of the conduction band, the result
shown in figure 8 only says that this polarization does not off-set the positive magnetization
of the d electrons. However, in light of our discussion at the end of section 4, it seems that
the earlier interpretation of the magnetic Compton profiles (Zukowskiet al 1997) as showing
negative polarization of the conduction band could be not well grounded.
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7. Conclusions

The paper shows that the two-channel maximum entropy method can be successfully applied
to the reconstruction of the momentum density for electrons with uncompensated spins when
some physical information about this density distribution is available. One can also hope that
once a good prior is chosen a single-channel MEM can be used as well.

We have investigated the three-dimensional electron momentum density distribution for
electrons with uncompensated spins in iron, Fe3Si and in the Heusler alloy, Cu2MnAl. Whereas
the results for Fe and Fe3Si look very similar, the analysis of the data for the latter alloy could
be performed under an assumption of a strictly positive distribution.

The very first conclusion which can be drawn from these facts is that the negative
polarization of the conduction band in iron and in Fe3Si are of similar magnitude, while
the one in Cu2MnAl must be much smaller, if exists at all, which explains why it was not seen
in the neutron experiment.

However, a closer look at the values of negative magnetic moments obtained in the course
of analysis for iron and Fe3Si makes us suspicious whether the crater-like structure is entirely
due to the conduction band. If this was so, the polarization of this band would be much
higher than the theoretical predictions show. Therefore we are inclined to think that the
craters are also natural for the d-part of the densities and can appear e.g. as a consequence
of the exchange polarization among d electrons. It is known that such an effect contracts
wavefunctions of electrons with up spins and pushes wavefunctions of the other electrons
away from the atomic centre. Therefore a negative d-type moment should appear far away
from the atom, which means that such a moment could appear in the vicinity ofp = 0 au. Our
strictly experimental observation recently found important support in the theoretical analysis
of the magnetic Compton profile of nickel (Dixonet al 1998), where indeed it has been found
that one of the d bands gives a strong negative contribution to the magnetic Compton profile
at small momenta. It seems that now we can better understand results of the magnetic neutron
diffraction and the magnetic Compton scattering experiments.
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